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ABSTRACT

A variety of modifications to the modeled dissipation rate transport equation that have

been proposed during the past two decades to account for rotational strains are examined.

The models are subjected to two crucial test cases: the decay of isotropic turbulence in a

rotating frame and homogeneous shear flow in a rotating frame. It is demonstrated that

these modifications do not yield substantially improved predictions for these two test cases

and in many instances give rise to unphysical behavior. An alternative proposal, based on

the use of the tensor dissipation rate, is made for the development of improved models.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in

Science and Engineering, NASA Langley Research Center, Hampton, VA 23665.
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1. Introduction

Many turbulent flows of practical importance involve combinations of rotational and

irrotational mean strains. The rotational strains can arise from the effects of curvature, a

system rotation, or swirl, as well as from shear. Much of the motivation for formulating

second-order closure models has its origins in the desire to account for the distinct physical

effects of rotational and irrotational strains, in a framework where directional information

is incorporated. Reynolds stress models of the eddy viscosity type, since they only depend

on the mean velocity gradients through their symmetric part (i.e., the mean rate of strain

tensor), are oblivious to the presence of rotational strains. Consequently, these models

cannot distinguish between the considerably different turbulence physics exhibited in plane

shear, plane strain, and rotating plane shear flows - a deficiency that is now well-known

[1, 2]. However, the same deficiency still remains with the modeled form of the dissipation

rate transport equation that has been commonly used in the turbulence modeling literature

starting with the work of Launder and co-workers [3]. This frequently used model has

no explicit dependence on rotational strains; rotational strains can only have an indirect

effect through the changes that they induce in the Reynolds stress tensor. Such a limited

dependence is known to be defective, making it impossible to properly describe rotating

isotropic turbulence and swirling jets, among other turbulent flows [4, 5]. Consequently,

several independent researchers over the past two decades have tried to develop rotational

modifications to the modeled dissipation rate transport equation to resolve this problem.

These alterations will be the subject of the present study.

In this paper, a variety of previously proposed modifications to the modeled dissipation

rate transport equation will be considered:

(1) the Pope [51 model,

(2) the I-Ianjalic and Launder [6] model,

(3) the Bardina model [?], and

(4) the Raj [8] model.

These models represent a good cross-section of the rotational modifications to the modeled

dissipation rate transport equation that have been proposed during the last fifteen years.

Two flows from homogeneous turbulence will be used to test the models: (a) the decay of

isotropic turbulence in a rotating frame, and (b) homogeneous shear flow in a rotating frame.

These two test cases are chosen since they represent homogeneous flows whose structure is

significantly altered by rotation, without the added complication of walls or other sources

of mean turbulent diffusion. In this fashion, the question of the interaction of rotational

and irrotational strains can be studied in isolation, independent of the complicating features

introduced by solid boundaries and mean turbulent diffusion. The performance of each of the

models will be documented in detail and specific proposaIs will be made for the development

of improved models. A new model based on the tensor dissipation - formulated in order to

include more directional information - will be proposed and tested.



2. The Models and Test Cases to be Considered

We will restrict our attention to the incompressibIe flow of a viscous fluid with constant

properties. The velocity field v and pressure P are decomposed into mean and fluctuating

parts, respectively, as follows:

v=V+u, P=P+p. .(1)

The exact transport equation for the turbulent dissipation rate in homogeneous flows takes

the form [2]

_=p,-_. (2)
where

_, = 2u2 c32ui 02ul
OzjOzk OzjOzk (4)

are, respectively, the production and destruction of dissipation terms given that e __

2vOui/c3zicgui/tgzi is the scalar dissipation rate and v is the kinematic viscosity of the fluid.

Here, since the turbulence is homogeneous, the overbar denotes a spatial mean, and the

superposed dot denotes an ordinary time derivative.

The modeled version of the transport equation for c that has been used widely in the

turbulence modeling community - which is due to Launder and co-workers [3] - takes the
form

= c,_ - c_ (5)

where 7) = -u-i_O-_jOm i is the turbulence production, and C,1 and C_2 are dimensionless

constants that typically assume the values of 1.44 and 1.92, respectively. Equation (5)

is obtained from (2) by making the assumption that the production (or destruction) of

dissipation is proportional to the production (or destruction) of turbuIent kinetic energy,

i.e.,

where T0 is the turbulent time scale that is needed for dimensional consistency. The added

assumption that the turbulent time scale _-o is given by

K
_o= - (7)

g

then yields the modeled equation (5).

Due to the symmetry of the Reynolds stress tensor 7-ii = uiuj, it follows that

p = -r_j_j (s)

where

_ = -_\o_j + o_,/ (9)
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is the mean rate of strain tensor. Hence, (5) has no ezplicit dependence on the mean rotation

tensor

_ 1 (O_i O'_j'_ (10)

It therefore follows that the commonly used modeled dissipation rate equation can only

be affected indirectly by rotational strains through the changes that they induce in the

Reynolds stress tensor. As we will show later, this makes it difficult to properly describe

certain rotating turbulent flows.

The model suggested by Pope [5] is based on the addition of a mean vortex stretching

term and takes the form

e ¢2 K 2
(11)

in homogeneous turbulence where C,1 = 1.44, C,2 = 1.92, and C,3 = 0.79. The standard

e-equation is obtained in the limit as C,a _ 0. In the modification proposed by Hanjalic

and Launder [6] to "sensitize the dissipation equation to irrotational strains," the e-equation

takes the following form in homogeneous turbulence:

s C,2_ C, sKe,_iie,,klO'fii O-_k= C,I- P - - Ozj Ozl
(12)

where eijk is the permutation tensor and Col = 1.44, Cc2 = 1.92, and C,n = 0.27. Since,

= 3',j+- (13)
wij

it is clear that this modification introduces rotational strains; in the limit as 6',3 --_ 0 the

standard e-equation is recovered. The Bardina model [7, 9] takes the form

. g (7._ 2
(14)

in a homogeneous turbulence, where

l

C:1 : 1.50 - 0.015 K w_i_ i '
g

(15)

1

C;*2 : 1.83 + 0.15 K (1 __ ),_w_jw O (16)

are functions of the mean rotation tensor. The models (11), (12), and (14)-(16) are written

for an inertial frame. In a non-inertial frame, the rotation tensor _o must be replaced by

the absolute mean rotation tensor

Wij = "wii Jr emji_m (17)

where fir, is the angular velocity of the non-inertial frame relative to an inertial framing (see

Speziale [10]).



Raj [8]developedamodelbasedon ananalysisof the exact transport equationof the true

dissipation. In an inhomogeneous turbulence, this exact transport equation contains terms

that depend explicitly on the rotation rate of the reference frame. Based on an empirical

argument, Raj [8] developed a simple correction term to account for the effect of rotations

which was guided by his turbomachinery research. For homogeneous turbulence, the model

proposed by Raj [8] takes the form

_te --_e 2 (3r,, )= O._-=7_ - O.2= + C.3_e 1
\ 2K (18)

in a rotating turbulent flow, where _ is the angular velocity of the reference frame - which,

for simplicity, is aligned along the z direction - and r,, is the component of Reynolds stress

tensor along the axis of rotation. Here, C_3 is a constant of COil ). In the limited practical

applications where this model has been used, C,3 has assumed different values ranging from

1 to 5. For simplicity, we will set C,a = 5 (the largest of these values); C,1 and C_2 assume

the traditional values of 1.44 and 1.92, respectively. It must be said at the outset that (18)

does not constitute a general model and has some internal inconsistencies in the way it was

derived [11]. Nonetheless, the model does have some interesting features that are worth

testing in the problems to be considered in this study (e.g., the model directly accounts for

the effect of the rotationally induced anisotropy in the Reynolds stress tensor, along the axis

of rotation, on the dissipation).

In order to test these models in the flows to be considered, a Reynolds stress model is

needed. A simple second-order closure model is chosen - namely, the shortened form of the

Launder, Reece, and Rodi model which is now referred to as the "Basic Model" by Launder

and co-workers [12]. For a homogeneous turbulence in a rotating frame, this Basic Model of

Launder and co-workers takes the form [13]:

+(02 - + (19)

- gg6 j) - ge6, o,j-

where C1 and Ci are dimensionless constants that assume the values of 1.8 and 0.6, respec-

tively. This model is derived by making two major assumptions - namely that the dissipation

rate tensor is isotropic, i.e.,
2

= (20)

and the pressure strain correlation is of the general form

(gq'_k

where .Aij and .A4ijkt are linear functions of the anisotropy tensor b.

(21)



The first problem to be considered as a test case is isotropic turbulence in a rotating

frame. Here, an initially decaying isotropic turbulence wherein

2

rii = _K06ii, c = c0, (22)

at time t = 0, is subjected to a solid body rotation with constant angular velocity

n, = (0,o,n) (23)

and vanishing mean velocity gradients

0"_i 0. (24)
Ozj

The substitution of (23) - (24) into (19) - along with the use of the initial condition of

isotropy (22) - then yields the equation

= -c (25)

2
where r_i = _KS_i. This is the same form as its non-rotating counterpart. Hence, the

Launder, Reece, and Rodi model predicts that an initially isotropic turbulence subjected to

a rotation decays isotropically - a result that is consistent with the Navier-Stokes equations

[14, 15]. For rotating isotropic turbulence, the modeled c- transport equation takes the
standard form

_2

= (26)

(where C,_ = 1.92) for the Pope and the Raj models; consequently, these models do not

distinguish the difference between isotropic turbulence in a rotating frame and in an inertial

fraxne. The Bardina model, however, does have a non-zero rotational correction; for rotating

isotropic turbulence (14) takes the form

C 2

.A
(27)

where C,2 = 1.83 and C,3 = 0.15. Likewise, so does the Hanjalic and Launder model for

which we have the following e-transport equation in rotating isotropic turbulence:

= -C_2_ - 4C_sKfl 2 (28)

where C_2 = 1.92 and C,s = 0.27.

The second problem to be considered is homogeneous shear flow in a rotating frame. The

mean velocity gradients here take the form

_--= 0 0 0

0 0 0

(29)



which correspondto a plane shear.They areapplied in a steadily rotating framewherethe
axisof rotation is normal to the plane of the shear, i.e.,

n, -- (0,0,_).

The substitution of (28)- (29) into (19) yields the Reynolds stress transport equation

c 2

" o]A,,= -ia °+ o
0 0

where

(30)

(31)

and _P -- -rl2S is the turbulence production. The e-transport equation for the Pope model

is given by
g ¢2

= -0,1_T,25"- 0,2_ (32)

in rotating shear flow. This is the same as the standard mode] due to the fact that the mean

vortex stretching term in (11) vanishes for any plane homogeneous turbulence. The Bardina

model for rotating shear flow is obtained by replacing 0,1 and 0,2 in (32) with

C':*I = 1.,50- 00151½s- fllK/c (33)

0:2 = 1.83+ 0.151½S- _IK/_. (34)

Both the Hanjallc" and Launder model and the Raj model take the form

g _2

= -C,_--_'r_2S - 0,2--_ + R (35)

in rotating shear flow where C,1 = 1.44 andUe2 = 1.92. For the Hanjalic and Launder model

R = -O,3K(S- 2D) 2 (36)

where C_3 = 0.27, whereas for the Raj model

1 (37)

where 0,3 = 5.

In rotating shear flow, the transport equations for _'_i and E are solved subject to the

initial conditions of isotropy (22) at time t = 0.

3. Discussion of the Results

For the two homogeneous turbulence problems to be considered, the models give rise

to a coupled set of first-order nonlinear ordinary differential equations which are solved by

a fourth-order accurate Runge-Kutta numerical integration scheme. First, the results for
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isotropic turbulence in a rotating frame will be presented. For this problem, the solutions

depend on fl, K0, and ¢0 only through the dimensionless parameter _Ko/co. In Figures

l(a) - (b) the time evolution of the dimensionless turbulent kinetic energy (K* = K/Ko

and r = sot/Ko is the dimensionless time) obtained for the Bardina model is shown for two

moderate rotation rates: _Ko/Co = 0.123 and _Ko/_o = 0.469. These two rotation rates

correspond to the test cases considered in the physical experiments of Wigeland and Nagib

[15]. It is clear that the agreement between the model predictions and the experiments is good

(however, it should be noted that the difference between these results and the predictions of

the standard model are small). This is not surprising since the Bardina model was calibrated

based on the same experimental data [7]. While the Bardina model performs well for weak

rotation rates, it has substantial problems for rapidly rotating isotropic turbulence. In Figure

1(c), the time evolution of the turbulent kinetic energy predicted by the Bardina model for

_Ko/eo = 69.5 is compared with the direct simulations of Speziale, Mansour, and Rogallo

[14]. It is clear that the model drastically underpredicts the decay rate of the turbulent

kinetic energy. This arises from a deficiency in the model; it is a simple matter to show that,

for _Ko/¢o > 1.11, the Bardina model predicts that the turbulence Reynolds number Ret

increases during the decay - a result that is unphysical.

The time evolution of the turbulent kinetic energy predicted by the Hanjalic and Launder

model is shown in Figure 2(a) along with the predictions of the standard model and the

experimental data of Wigeland and Nagib on rotating isotropic turbulence corresponding

to flKo/so = 0.123. While the model does not do too bad a job for this case, it yields

worse results than the standard model. It then breaks down entirely for appreciable values

of _Ko/so. In Figure 2(b), the predictions of the Hanjalic and Launder model are shown

for F_K0/s0 = 0.469. The model yields extremely bad results for this case and becomes

unrealizable when r - 4.2 (i.e., the dissipation rate becomes negative causing us to terminate

the calculations). It is the source term added by Hanjalic and Launder to the right-hand-side

of the dissipation rate equation that causes the model to become unrealizable for discernible

values of _Ko/¢o. We will not show the results for the Pope model and the Raj model since

they are identical to the predictions of the standard model. Hence, like the standard model,

they are unable to predict the reduction in the decay rate of the turbulent kinetic energy

that arises from a system rotation of isotropic turbulence [14, 15].

Now, we will discuss the results obtained for rotating shear flow. In Figures 3(a)- (c), the

time evolution of the turbulent kinetic energy predicted by the Bardina model is compared

with the standard model and the large-eddy simulations of Bardina, Ferziger, and Reynolds

[16] for three rotation rates: _/S = 0, 0.25, and 0.5. (Again, K" = K/Ko whereas t" = St).

From Figures 3(b) - 3(c) it is clear that the Bardina model has little effect for appreciable

rotation rates; like the standard model, the Bardina model drastically underpredicts the

growth rate of the turbulent kinetic energy for _/S = 0.25 and _/S = 0.5. However, what

is more serious is that the Bardina modification degrades considerably the results for pure

shear flow (_/S = 0) as shown in Figure 3(a). The growth rate of the turbulent kinetic

energy predicted by the Bardina model is too high. This results from the overprediction of

the equilibrium value of the shear anisotropy (b12)_ = -0.191; the standard model yields a

value of (b_2)_ = -0.I8 which is closer to the experimental value of (b12)_ = -0.16.

In Figure 4, the predictions of the Hanjalic and Launder model are compared with the

standard model and the large-eddy simulation of Bardina, Ferziger, and Reynolds [16] for



homogeneousshearflow (F_/S= 0). It is clearthat the Hanjalic and Launder modelpredicts
much too strong a growth rate for the turbulent kinetic energy in homogeneousshearflow.
This results from an underprediction of the dissipation rate. In fact, the calculation is
terminated a short time after S't -- 2 due to the model becoming unrealizable through
negativedissipation rates. Sincethe Hanjalic and Launder model yields anomalousresults
for pure shearflow (the most basiccase)wewill not bother to showthe results for non-zero
rotation rates.

In Figures 5(a) - (b), the resultspredicted by the Raj model for rotating shearflow are
comparedwith those of the standard model as well as with the large-eddysimulations of
Bardina, Ferziger,and Reynolds [16]. Wedo not showthe resultsof the Raj model for pure
shearflow (_/S -- 0) sincethey are identical to thoseof the standard model. From Figure

5(a), it is clear that the Raj model yields improved predictions over the standard model for

the _/S = 0.25 case. However, there are problems with the R.aj model for rotation rates

that are appreciably larger than _/S' = 0.25 as can be seen in Figure 5(b). For the case

where fl/S' --- 0.5, the Raj model yields unrealizable results (i.e., the dissipation rate becomes

negative for values of St appreciably larger than 7).

It is clear from these results that simple corrections to the modeled dissipation rate

equation obtained by adding a source term that depends on rotational strains can give rise to

realizability problems (see Lumley [1]). Since the standard modeled dissipation rate equation

is realizable with respect to K and ¢ (i.e., as shown by Speziale [17], the standard model will

always yield positive kinetic energies and dissipation rates in homogeneous turbulent flows),
it is clear that these kind of ad hoc corrections are counterproductive. In order to properly

describe the turbulent flows discussed in this section, directional and two-point information

is needed in the modeling of the dissipation rate. Speziale and Gatski [18] have been recently

working on the development of a modeled transport equation for the tensor dissipation rate

Ou_ Ouj
eij- 2v

This model for the tensor dissipation takes the form

_j = -elt, _,Oz.t, q- 2e,.,kjFl,,, -- ¢j_ \ O:r.k q- 2e,_k_'l_

2 ¢ 6, ¢
(38)

-C,,(eikWj , + eskW  )

in a rotating frame where C_1 = 1.46, C,2 = 1.83, C_3 = 1.50, and C,4 = 1.0. It was

developed for use in conjunction with the SSG model for the pressure-strain correlation

derived recently by Speziale, Sarkar, and Gatski [19]. In Figures 6(a) - (c), the results

predicted by the tensor dissipation model (used in conjunction with the SSG model) are

compared with the predictions of the Launder, R.eece, and Rodi model and the large-eddy

simulations [16]. It is clear that this new tensor dissipation model does a much better

job in capturing the trends of the large-eddy simulations. Most notably, the substantially

stronger growth rate of the fl/S = 0.25 case is, for the most part, captured; furthermore,



the model doesnot restabilizefor the _/S = 0.5 case - a result that is consistent with linear

stability theory as well as with the large-eddy simulations. These improvements are not that

surprising in light of the recent findings of Durbin and Speziale [20] which suggest that the

dissipation rate tensor can be a_isotvopic in equilibrium homogeneous shear flows at high

turbulence Reynolds numbers.

4. Conclusions

Several modifications to the modeled dissipation rate transport equation that have been

proposed to account for rotational strains are compared critically for two test flows. The

following general conclusions can be drawn:

(1) The Pope [5] model yields the same predictions as the standard model for rotating

isotropic turbulence and for rotating homogeneous shear flow. These predictions are deficient

in that they fail to properly account for the reduction in the turbulence decay rate that results

from a system rotation of isotropic turbulence and they fail to account accurately for the

changes in the growth rate of the turbulent kinetic energy that result from a system rotation

of homogeneous shear flow which can either stabilize or destabilize the flow.

(2) The Hanjalic and Launder [6] model has major problems with the violation of real-

izability. It yields negative dissipation rates in rotating isotropic turbulence for appreciable

values of flKo/eo. Furthermore, this modification degrades significantly the predictions for

homogeneous shear flow (the predicted growth rate of the turbulent kinetic energy is much

too large).

(3) The Bardina model [7] is only able to accurately predict the reduction in the decay rate

of the turbulent kinetic energy in rotating isotropic turbulence for weak to moderate rotation

rates where this effect is small. For _Ko/co >> 1, this model predicts too strong a reduction

in the turbulence decay rate. Furthermore, this model does not yield any improvements for

rotating homogeneous shear flow and mildly degrades the predictions for pure shear flow.

(4) The Raj [8] model yields the same deficient predictions as the standard model in

rotating isotropic turbulence. In rotating homogeneous shear flow, this model does yield

some improvements for moderate rotation rates for which f_/S < 0.3. However, for stronger

rotation rates the model becomes unrealizable and yields negative values for the turbulent

dissipation rate.

In order to properly describe rotating turbulent flows, some directional and two-polnt

information needs to be incorporated into models for the dissipation rate rather than the ad

hoc modifications discussed above. The directional information can be incorporated through

the use of the tensor dissipation. In this regard, the preliminary calculations presented in

Section 3 for rotating shear flow based on a modeled tensor dissipation rate equation appear

to be promising. However, the reduction in the decay rate of the turbulent kinetic energy

in rotating isotropic turbulence is a two-point phenomena; the inertial waves generated by a

system rotation scramble the transfer term in such a way that the phase coherence needed



to cascade energy from large to small scales is disturbed. Some limited two-point informa-

tion needs to be included based on an appropriate integral length scale which responds to

rotational strains. This issue is currently under investigation and will be the subject of a

future paper.
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Figure 2. The decay of turbulent kinetic energy in rotating isotropic turbulence:

Hanjaaic and Launder model; - - - standard model; o experimental data [15]. (a) £Ko/eo =
0.123, (b) £Ko/¢o = 0.469.
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Figure 5. Time evolution of the turbulent kinetic energy in rotating shear flow for eo/SKo =

0.296: _ standard model; - - - Raj model; o large eddy simulations [16]. (a) f_/S = 0.25,
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Figure 6. Time evolution of the turbulent kinetic energy in rotating shear flow for So/Z,.qKo =

0.296: _ standard model; - - - tensor dissipation model [18]_ o large eddy simulations
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